Entrer un problème...
Algèbre linéaire Exemples
[2-1-15-112-31-234]⎡⎢⎣2−1−15−112−31−234⎤⎥⎦
Étape 1
Étape 1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
Étape 1.1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
[22-12-1252-112-31-234]⎡⎢
⎢⎣22−12−1252−112−31−234⎤⎥
⎥⎦
Étape 1.1.2
Simplifiez R1R1.
[1-12-1252-112-31-234]⎡⎢
⎢⎣1−12−1252−112−31−234⎤⎥
⎥⎦
[1-12-1252-112-31-234]⎡⎢
⎢⎣1−12−1252−112−31−234⎤⎥
⎥⎦
Étape 1.2
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
Étape 1.2.1
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
[1-12-1252-1+1⋅11-122-12-3+521-234]⎡⎢
⎢⎣1−12−1252−1+1⋅11−122−12−3+521−234⎤⎥
⎥⎦
Étape 1.2.2
Simplifiez R2R2.
[1-12-125201232-121-234]⎡⎢
⎢⎣1−12−125201232−121−234⎤⎥
⎥⎦
[1-12-125201232-121-234]⎡⎢
⎢⎣1−12−125201232−121−234⎤⎥
⎥⎦
Étape 1.3
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
Étape 1.3.1
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
[1-12-125201232-121-1-2+123+124-52]⎡⎢
⎢
⎢⎣1−12−125201232−121−1−2+123+124−52⎤⎥
⎥
⎥⎦
Étape 1.3.2
Simplifiez R3R3.
[1-12-125201232-120-327232]⎡⎢
⎢
⎢⎣1−12−125201232−120−327232⎤⎥
⎥
⎥⎦
[1-12-125201232-120-327232]⎡⎢
⎢
⎢⎣1−12−125201232−120−327232⎤⎥
⎥
⎥⎦
Étape 1.4
Multiply each element of R2R2 by 22 to make the entry at 2,22,2 a 11.
Étape 1.4.1
Multiply each element of R2R2 by 22 to make the entry at 2,22,2 a 11.
[1-12-12522⋅02(12)2(32)2(-12)0-327232]⎡⎢
⎢
⎢
⎢⎣1−12−12522⋅02(12)2(32)2(−12)0−327232⎤⎥
⎥
⎥
⎥⎦
Étape 1.4.2
Simplifiez R2R2.
[1-12-1252013-10-327232]⎡⎢
⎢⎣1−12−1252013−10−327232⎤⎥
⎥⎦
[1-12-1252013-10-327232]⎡⎢
⎢⎣1−12−1252013−10−327232⎤⎥
⎥⎦
Étape 1.5
Perform the row operation R3=R3+32R2R3=R3+32R2 to make the entry at 3,23,2 a 00.
Étape 1.5.1
Perform the row operation R3=R3+32R2R3=R3+32R2 to make the entry at 3,23,2 a 00.
[1-12-1252013-10+32⋅0-32+32⋅172+32⋅332+32⋅-1]⎡⎢
⎢⎣1−12−1252013−10+32⋅0−32+32⋅172+32⋅332+32⋅−1⎤⎥
⎥⎦
Étape 1.5.2
Simplifiez R3R3.
[1-12-1252013-10080]⎡⎢
⎢⎣1−12−1252013−10080⎤⎥
⎥⎦
[1-12-1252013-10080]⎡⎢
⎢⎣1−12−1252013−10080⎤⎥
⎥⎦
Étape 1.6
Multiply each element of R3R3 by 1818 to make the entry at 3,33,3 a 11.
Étape 1.6.1
Multiply each element of R3R3 by 1818 to make the entry at 3,33,3 a 11.
[1-12-1252013-108088808]⎡⎢
⎢⎣1−12−1252013−108088808⎤⎥
⎥⎦
Étape 1.6.2
Simplifiez R3R3.
[1-12-1252013-10010]⎡⎢
⎢⎣1−12−1252013−10010⎤⎥
⎥⎦
[1-12-1252013-10010]⎡⎢
⎢⎣1−12−1252013−10010⎤⎥
⎥⎦
Étape 1.7
Perform the row operation R2=R2-3R3R2=R2−3R3 to make the entry at 2,32,3 a 00.
Étape 1.7.1
Perform the row operation R2=R2-3R3R2=R2−3R3 to make the entry at 2,32,3 a 00.
[1-12-12520-3⋅01-3⋅03-3⋅1-1-3⋅00010]⎡⎢
⎢⎣1−12−12520−3⋅01−3⋅03−3⋅1−1−3⋅00010⎤⎥
⎥⎦
Étape 1.7.2
Simplifiez R2R2.
[1-12-1252010-10010]⎡⎢
⎢⎣1−12−1252010−10010⎤⎥
⎥⎦
[1-12-1252010-10010]⎡⎢
⎢⎣1−12−1252010−10010⎤⎥
⎥⎦
Étape 1.8
Perform the row operation R1=R1+12R3R1=R1+12R3 to make the entry at 1,31,3 a 00.
Étape 1.8.1
Perform the row operation R1=R1+12R3R1=R1+12R3 to make the entry at 1,31,3 a 00.
[1+12⋅0-12+12⋅0-12+12⋅152+12⋅0010-10010]⎡⎢
⎢⎣1+12⋅0−12+12⋅0−12+12⋅152+12⋅0010−10010⎤⎥
⎥⎦
Étape 1.8.2
Simplifiez R1R1.
[1-12052010-10010]⎡⎢
⎢⎣1−12052010−10010⎤⎥
⎥⎦
[1-12052010-10010]⎡⎢
⎢⎣1−12052010−10010⎤⎥
⎥⎦
Étape 1.9
Perform the row operation R1=R1+12R2R1=R1+12R2 to make the entry at 1,21,2 a 00.
Étape 1.9.1
Perform the row operation R1=R1+12R2R1=R1+12R2 to make the entry at 1,21,2 a 00.
[1+12⋅0-12+12⋅10+12⋅052+12⋅-1010-10010]⎡⎢
⎢⎣1+12⋅0−12+12⋅10+12⋅052+12⋅−1010−10010⎤⎥
⎥⎦
Étape 1.9.2
Simplifiez R1R1.
[1002010-10010]⎡⎢⎣1002010−10010⎤⎥⎦
[1002010-10010]⎡⎢⎣1002010−10010⎤⎥⎦
[1002010-10010]⎡⎢⎣1002010−10010⎤⎥⎦
Étape 2
The pivot positions are the locations with the leading 11 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11,a22,a11,a22, and a33a33
Pivot Columns: 1,2,1,2, and 33
Étape 3
The rank is the number of pivot columns.
33